Circuits Worksheet #8

- 1. A 16 Ω and a 8 Ω resistor are connected in parallel. Find the equivalent resistance. (5.33 Ω)
- 2. A 5 Ω , 10 Ω , and 15 Ω resistor are connected in parallel.
 - a) Find the equivalent resistance. (2.73Ω)
 - b) Find the current drawn by each resistor when they are connected in parallel to a 6 V battery. (1.2 A, 0.6 A, 0.4 A)
 - c) Find the total current dawn by the three resistors by adding the currents in part b. Show that a single resistor of resistance equal to the value in part a draws the same amount of current from the 6 V battery. (2.2 A)
- 3. The following three appliances are connected in parallel to a 120 V house circuit; a 1600 W toaster; a 1250 W microwave; and a 600 W coffee pot. If all three were operated at the same time, what total current would they draw? (28.75 A)
- 4. Three resistors connected in parallel have individual resistances of 450Ω , 1350Ω , and 2700Ω . If the circuit is connected to a 40 V source, find
 - a) the current through each resistor. (0.0889 A, 0.0296 A, 0.0148 A)
 - b) the total current delivered by the source. (0.133 A)
 - c) the equivalent resistance of the circuit. (300Ω)
 - d) the rate at which the source delivers energy. (5.33 W)
 - e) the rate of heat dissipation in each resistor. (3.56 W, 1.19 W, 0.593 W)
- 5. Given that the resistors R_1 , R_2 , and R_3 are wired in parallel to a voltage source, complete the table:

Component	Current	Voltage	Resistance	Power
Source		75 V		
R ₁				37.5 W
R ₂				12.5 W
R ₃				4.69 W

6. For the circuit shown below,

determine:

- a) the equivalent resistance of the circuit. (55.9 Ω)
- b) the current through each resistor. (0.533 A, 0.106 A, 0.0762 A)
- c) the total current delivered by the source. (0.716 A)
- d) the power delivered by the source. (28.6 W)
- e) the power dissipated in each resistor. (21.33 W, 4.27 W, 3.05 W)
- 7. Given that the resistors R_1 , R_2 , and R_3 are wired in parallel to a voltage source, complete the table:

Component	Current	Voltage	Resistance	Power
Source		120 V		
R_{1}			1250Ω	
R ₂	0.032 <i>A</i>			
R ₃				1.28 W

8. Given that the resistors R_1 , R_2 , and R_3 are wired in parallel to a voltage source, complete the table:

Component	Current	Voltage	Resistance	Power
Source				0.3715 W
R_1		0.16 V		
R ₂			$0.275 \ \Omega$	
R ₃	0.286 A			

9. For the circuit shown below,

determine:

- a) the equivalent resistance of the circuit. (200Ω)
- b) the total current drawn by the resistors. (0.12 A)
- c) the potential drop across the parallel combination. (13.4 V)
- d) the current through resistors R_2 , R_3 , and R_4 . (0.0894 A, 0.0179 A, 0.0128 A)
- e) the power delivered by the source. (2.88 W)
- 10. Determine the equivalent resistance of each of the following combinations of resistors.

Answer : 46.7 $\boldsymbol{\Omega}$

R2 = 65 Ω

R3 = 85 Ω

Answer : 113 Ω

+

Answer : 335 Ω

c)

R1 = 63 Ω

Component	Current	Voltage	Resistance	Power
Source	0.729 <i>A</i>	75 V		54.7 W
R ₁	0.500 <i>A</i>	75 V	150 Ω	37.5 W
R ₂	0.167 A	75 V	450Ω	12.5 W
R ₃	0.0625 A	75 V	1200 Ω	4.69 W

Answers for problems 5, 7, and 8:

Component	Current	Voltage	Resistance	Power
Source	0.139 <i>A</i>	120 V		16.64 W
R_1	0.096 A	120 V	1250Ω	11.52 W
R ₂	0.032 <i>A</i>	120 V	3750Ω	3.84 W
R ₃	0.0107 A	120 V	11250 Ω	1.28 W

Component	Current	Voltage	Resistance	Power
Source	2.32 A	0.16 V		0.3715 W
R_1	1.45 <i>A</i>	0.16 V	0.110 Ω	0.2327 W
R ₂	0.582 <i>A</i>	0.16 V	$0.275 \ \Omega$	0.0931 W
R ₃	0.286 A	0.16 V	$0.560 \ \Omega$	0.0457 W