Circuits Worksheet \#8

1. A 16Ω and a 8Ω resistor are connected in parallel. Find the equivalent resistance. (5.33 Ω)
2. A $5 \Omega, 10 \Omega$, and 15Ω resistor are connected in parallel.
a) Find the equivalent resistance. (2.73 Ω)
b) Find the current drawn by each resistor when they are connected in parallel to a 6 V battery. (1.2 A, 0.6 A, 0.4 A)
c) Find the total current dawn by the three resistors by adding the currents in part b. Show that a single resistor of resistance equal to the value in part a draws the same amount of current from the 6 V battery. (2.2 A)
3. The following three appliances are connected in parallel to a 120 V house circuit; a 1600 W toaster; a 1250 W microwave; and a 600 W coffee pot. If all three were operated at the same time, what total current would they draw? (28.75 A)
4. Three resistors connected in parallel have individual resistances of $450 \Omega, 1350 \Omega$, and 2700Ω. If the circuit is connected to a 40 V source, find
a) the current through each resistor. $(0.0889 A, 0.0296 A, 0.0148 A)$
b) the total current delivered by the source. ($0.133 A$)
c) the equivalent resistance of the circuit. (300Ω)
d) the rate at which the source delivers energy. (5.33 W)
e) the rate of heat dissipation in each resistor. (3.56 W, 1.19 W, 0.593 W)
5. Given that the resistors R_{1}, R_{2}, and R_{3} are wired in parallel to a voltage source, complete the table:

Component	Current	Voltage	Resistance	Power
Source		75 V		
R_{1}				37.5 W
R_{2}				12.5 W
R_{3}				4.69 W

6. For the circuit shown below,

determine:
a) the equivalent resistance of the circuit. (55.9 Ω)
b) the current through each resistor. ($0.533 A, 0.106 A, 0.0762 A$)
c) the total current delivered by the source. $(0.716 A)$
d) the power delivered by the source. $(28.6 \mathrm{~W})$
e) the power dissipated in each resistor. (21.33 W, 4.27 W, 3.05 W)
7. Given that the resistors R_{1}, R_{2}, and R_{3} are wired in parallel to a voltage source, complete the table:

Component	Current	Voltage	Resistance	Power
Source		120 V		
R_{1}			1250Ω	
R_{2}	0.032 A			
R_{3}				1.28 W

8. Given that the resistors R_{1}, R_{2}, and R_{3} are wired in parallel to a voltage source, complete the table:

Component	Current	Voltage	Resistance	Power
Source				0.3715 W
R_{1}		0.16 V		
R_{2}			0.275Ω	
R_{3}	0.286 A			

9. For the circuit shown below,

determine:
a) the equivalent resistance of the circuit. (200 Ω)
b) the total current drawn by the resistors. ($0.12 A$)
c) the potential drop across the parallel combination. (13.4 V)
d) the current through resistors $\mathrm{R}_{2}, \mathrm{R}_{3}$, and R_{4}. $(0.0894 A, 0.0179 A, 0.0128 A)$
e) the power delivered by the source. (2.88 W)
10. Determine the equivalent resistance of each of the following combinations of resistors.

Answer : 46.7Ω

c)

Answer : 335Ω

Answers for problems 5, 7, and 8:

Component	Current	Voltage	Resistance	Power
Source	0.729 A	75 V		54.7 W
R_{1}	0.500 A	75 V	150Ω	37.5 W
R_{2}	0.167 A	75 V	450Ω	12.5 W
R_{3}	0.0625 A	75 V	1200Ω	4.69 W

Component	Current	Voltage	Resistance	Power
Source	0.139 A	120 V		16.64 W
R_{1}	0.096 A	120 V	1250Ω	11.52 W
R_{2}	0.032 A	120 V	3750Ω	3.84 W
R_{3}	0.0107 A	120 V	11250Ω	1.28 W

Component	Current	Voltage	Resistance	Power
Source	2.32 A	0.16 V		0.3715 W
R_{1}	1.45 A	0.16 V	0.110Ω	0.2327 W
R_{2}	0.582 A	0.16 V	0.275Ω	0.0931 W
R_{3}	0.286 A	0.16 V	0.560Ω	0.0457 W

